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ABSTRACT 

The lack of clear guidance regarding the value of elastic flexural rigidity (EI) that 
should be used in the analysis of steel-concrete composite columns is a significant 
unresolved issue that hinders the design of frame systems that include these members. 
The common approach of utilizing the rigidity of either the steel or the concrete only 
tends to be overly conservative. Other approaches that combine the rigidities have not 
been fully validated for use in strength and stability design procedures or for the 
determination of lateral deflections. To address this issue, research has been 
conducted to develop comprehensive recommendations for the elastic flexural rigidity 
of composite columns. A complimentary goal has been to validate common strength 
design procedures, including interaction diagrams, axial compression and bending 
moment anchor points, and analysis procedures to determine required strengths. In 
this paper, an assessment of current strength design methodologies is presented along 
with recommendations for potential improvements. Both the AISC Direct Analysis 
method and the ACI elastic second-order analysis method are investigated. 

INTRODUCTION  

The wide availability of structural analysis software packages that perform accurate 
geometric nonlinear analyses has made second-order elastic analysis design 
approaches very common in practice. Such design provisions exist for steel-concrete 
composite members in both the AISC Specification (AISC 2010b), as the Direct 
Analysis method, and the ACI Code (2011), as the second-order analysis method. 
However, neither methodology has yet been comprehensively assessed for validity 
and accuracy, as has been done in the past for structural steel (Kanchanalai 1977; 
Surovek-Maleck and White 2004) and for reinforced concrete (Hage and MacGregor 
1974). This paper presents the results of a large parametric study that has been 
conducted to assess the current design methodologies with a particular emphasis on 
the elastic flexural rigidity (EI) recommended for analysis. 
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BENCHMARK FRAMES 

The parametric study described in this work primarily consists of comparisons 
between results from second-order inelastic analyses and second-order elastic 
analyses on a set of benchmark frames. In order to ensure broad applicability of the 
recommendations, the benchmark frames are selected to cover a wide range of 
material and geometric properties. Similar studies for structural steel (Kanchanalai 
1977; Surovek-Maleck and White 2004) have used a set of small non-redundant 
frames and a W8×31 section in both strong and weak axis. For this work, this set of 
frames was expanded and a variety of composite cross sections were selected. In the 
parametric study, each cross section is used within each benchmark frame to provide 
a comprehensive set of results. 

Cross Sections 

The cross sections chosen for investigation in this work are categorized into four 
groups 1) Circular concrete-filled steel tubes (CCFT), 2) Rectangular concrete-filled 
steel tubes (RCFT), 3) Steel reinforced concrete (SRC) subjected to strong axis 
bending, and 4) SRC subjected to weak axis bending. Within these groups, sections 
were selected to span practical ranges of concrete strength, steel ratio (ratio of steel 
cross section area to gross cross section area), and for the SRC sections, reinforcing 
ratio (only CFTs without longitudinal reinforcing bars are analyzed in this work). 
Other section properties (e.g., steel yield stress) were taken as typical values. Steel 
yield strengths were selected as Fy = 345 MPa (50 ksi) for W shapes, Fy = 290 MPa 
(42 ksi) for round HSS shapes, Fy = 317 MPa (46 ksi) for rectangular HSS shapes, 
and Fyr = 414 MPa (60 ksi) for reinforcing bars. Three concrete strengths were 
selected: f′c = 27.6, 55.2, and 110.3 MPa (4, 8, and 16 ksi).   

There is no prescribed upper limit of steel ratio for composite sections; however, 
practical considerations and the dimensions of commonly produced steel shapes 
impose an upper limit of approximately 25% for CFT and 12% for SRC. The AISC 
Specification (2010b) sets a lower limit of steel ratio for composite sections as 1%. 
However, maximum permitted width-to-thickness ratios provide a stricter limit for 
CFT members, corresponding to steel ratio limits of 1.86% for CCFT and 3.16% for 
RCFT using the steel yield strengths listed above. For SRC members, the AISC 
Specification (2010b) prescribes a minimum reinforcing ratio of 0.4% and no 
maximum. The ACI Code (2011) prescribes a maximum reinforcing ratio of 8%. 

Noting these limitations, 5 round HSS shapes were selected for the CCFT sections, 5 
rectangular HSS shapes were selected for the RCFT sections and outside dimensions 
of 711 mm × 711 mm (28 in. × 28 in.), 4 wide-flange shapes, and 3 reinforcing 
configurations were selected for the SRC sections (Table 1). Altogether, 5 steel 
shapes × 3 concrete strengths = 15 total sections were selected each for RCFTs and 
CCFTs and 4 steel shapes × 3 reinforcing configurations × 3 concrete strengths = 36 
total sections were selected each for strong and weak axis bending of SRCs. 

Frames 

A set of small non-redundant frames were described and used in previous stability 
studies on structural steel members (Kanchanalai 1977; Surovek-Maleck and White 
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2004). The set includes both sidesway inhibited and sidesway uninhibited frames, a 
range of slenderness, end constraints, and leaning column loads. The set of frames 
was expanded and the frame parameters were generalized for use with composite 
sections in this study. The frames are shown schematically in Figure 1. The sidesway 
uninhibited frame is defined by a slenderness value (λoe1g), pair of end restraint 
parameters (Gg,top and Gg,bot), and leaning column load ratio (γ). The sidesway 
inhibited frame is defined by a slenderness value (λoe1g), and end moment ratio (β). 
The values of these parameters selected for the frames are described in Table 2, a 
total of 80 frames were selected. The “g” in the end restraint parameters and 
slenderness value denotes that these values are defined with respect to gross section 
properties.  

Table 1. Selected steel shapes and reinforcing configurations. 
Index Steel Shape   ρs 

A HSS 7.000×0.500 24.82% 
B HSS 10.000×0.500 17.70% 
C HSS 12.750×0.375 10.65% 
D HSS 16.000×0.250 5.72% 
E HSS 24.000×0.125† 1.93% 

 (a) CCFT 
 

Index Steel Shape ρs 
A HSS 6×6×1/2 27.63% 
B HSS 9×9×1/2 19.06% 
C HSS 8×8×1/4 11.13% 
D HSS 9×9×1/8 5.05% 
E HSS 14×14×1/8† 3.27% 

 (b) RCFT 

Index Steel Shape ρs 
A W14×311 11.66% 
B W14×233 8.74% 
C W12×120 4.49% 
D W8×31 1.16% 

(c) SRC (steel shapes) 

 

Index Reinforcing ρsr 
A 20 #11 3.98% 
B 12 #10 1.94% 
C 4 #8 0.40% 

(d) SRC (reinforcing configurations) 
† Not a standard shape 

Second-Order Elastic Analysis of Benchmark Frames 

The second-order elastic results described in this work were obtained from the 
solution of the governing differential equation (Equation 1) using the appropriate 
boundary conditions. Closed form solutions were obtained for displacement and 
moment along the length of the column using a computer algebra system. This 
approach is computationally expeditious and accurate for moderate displacements; 
however, only flexural deformations are included. Where necessary, the effective 
length factor (K) for the benchmark frames was computed using the same differential 
equation.  

 ( ) ( ) 0
P

v x v x
EI

′′′′ ′′+ =  (1) 

Second-Order Inelastic Analysis of Benchmark Frames 

The second-order inelastic results described in this work were obtained from finite 
element analyses. Key aspects of the model are summarized here, a full description is 
available elsewhere (Denavit 2012). The mixed beam finite element formulation is 
implemented in the OpenSees  framework (McKenna et al. 2000). It is a Total 
Lagrangian formulation assuming small strains and moderate rotations in the 
corotational frame and is coupled with an accurate geometric transformation. With 

2607Structures Congress 2014 © ASCE 2014



multiple elements along the length of a column, large displacement and rotation 
behavior is captured accurately.  

kθ,bot = 
6 EIgross

Gg,top L
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Figure 1. Schematic of the benchmark frames. 

 

Table 2. Benchmark frame variations. 

Frame Slenderness End 
Restraint 

Leaning 
Column 

Load Ratio 

End 
Moment 

Ratio 

Number 
of Frames 

Sidesway 
Uninhibited 

4 values 
λoe1g = {0.22, 

0.45, 0.67, 0.90} 

4 value pairs 
(Table 3) 

4 values 
γ = {0, 1, 2, 3} 

n/a 
64 

(= 4 × 4 × 4) 

Sidesway 
Inhibited 

4 values 
λoe1g = {0.45, 

0.90, 1.35, 1.90} 
n/a n/a 

4 values  
β = {-0.5, 

0.0, 0.5, 1.0} 

16 
(= 4 × 4) 

Table 3. End Restraint Value Pairs. 
Pair Gg,top Gg,bot 

A 0 0 
B 1 or 3† 1 or 3† 
C 0 ∞ 
D 1 or 3† ∞ 

†3 when γ = 0; 1 otherwise 

The constitutive relations were selected to correspond to assumptions common in the 
development of design recommendations (e.g., neglecting steel hardening and 
concrete tension strength) and are comparable to those used in commensurate studies 
(Surovek-Maleck and White 2004). Local buckling of the steel tube and other steel 
components was also neglected. This simplification allows for the investigation of the 
full range of steel ratios without the complexity of modeling local buckling, and is 
consistent with the development of the Direct Analysis method for steel structures 
(Surovek-Maleck and White 2004).  

Wide-flange shapes were modeled with elastic-perfectly plastic constitutive relations 
and the Lehigh residual stress pattern (Galambos and Ketter 1959). Reinforcing steel 
was assumed to have negligible residual stress and was also modeled with an elastic-
perfectly plastic constitutive relation. Residual stresses in cold formed steel tubes 
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vary through thickness. To allow a reasonable fiber discretization of the CFT 
sections, residual stresses were included implicitly in the constitutive relation. A 
multilinear constitutive relation was used in which the stiffness decreases at 75% of 
the yield stress and again at 87.5% of the yield stress to approximate the gradual 
transition into plasticity observed in cold-formed steel (Abdel-Rahman and 
Sivakumaran 1997). In addition, the yield stress in the corner region of the 
rectangular members was increased to account for the additional work hardening in 
that region.   

The Popovics concrete model was selected, with the peak compressive stress taken as 
f′c or greater to account for confinement (Denavit 2012). The modulus of elasticity 
used in the analysis was calculated by Equation 2 taken from the ACI Code (2011) 
for normal weight concrete. Equation 2 is equivalent to the expression in the AISC 
Specification (2010b) for wc = 2,372 kg/m3 (148.1 lbs/ft3).  

 [ ] [ ] [ ] [ ]MPa 4,733 MPa psi 57,000 psic c c cE f E f′ ′= =  (2) 

Nominal geometric imperfections equal to the fabrication and erection tolerations in 
the AISC Code of Standard Practice (AISC 2010a) were modeled explicitly. An out-
of-plumbness of L/500 was included for the sidesway uninhibited frames and a half 
sine wave out-of-straightness with maximum amplitude of L/1000 was included for 
all frames. The initial out-of-plumbness and initial out-of-straightness were applied in 
the same direction as this produced the greatest destabilizing effect for these frames. 

All frame analyses were performed with six elements along the length of the member, 
each with three integration points. Since the analyses were two-dimensional, strips 
were used for the fiber section; the nominal height of the strips was 1/30th of the 
section depth (e.g., for a CCFT section, approximately 30 steel and 30 concrete strips 
of near equal height were used). For the case of zero applied axial load, a cross 
section analysis was performed in lieu of the frame analysis. Often the objective of 
the analysis is to determine the limit point. In each analysis, the limit point was 
identified as the point when the lowest eigenvalue reached zero or when the 
maximum longitudinal strain within any section in the member reached 0.05. The 
strain limit was imposed since, for cases of low or zero axial load, the eigenvalue 
limit may not be reached or reached only at very high deformations. 

AXIAL STRENGTH  

In the AISC Specification (2010b), the nominal axial compressive strength (Pn) is 
determined from a column curve based on the nominal zero-length compressive 
strength (Pno) and the slenderness (λoe, Equation 3). The slenderness is a function of 
Pno, the effective length (KL) and the effective rigidity (EIeff, Equation 4 for SRCs and 
Equation 6 for CFTs). However, when utilized within the Direct Analysis method, the 
nominal axial compressive strength is not necessarily representative of the maximum 
permitted axial load since required notional loads can impart bending moments that 
reduce the axial capacity. To assess the maximum permitted axial load, a second-
order elastic analysis must be run to determine the applied compression force that 
results in internal forces the lay directly on the strength interaction diagram. An 
example of the beam-column interaction diagram constructed following the plastic 
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stress distribution approach defined in the commentary of the AISC Specification 
(2010b) is shown in Figure 2, noting that for the Direct Analysis method, the effective 
length factor is taken as unity. 

 no
oe

eff

PKL

EI
λ

π
=   (3) 

 10.5eff s s s sr c cEI E I E I C E I= + +  (4) 

 1 0.1 2 0.3s

c s

A
C

A A

⎛ ⎞
= + ≤⎜ ⎟+⎝ ⎠

 (5) 

 3eff s s s sr c cEI E I E I C E I= + +  (6) 

 3 0.6 2 0.9s

c s

A
C

A A

⎛ ⎞
= + ≤⎜ ⎟+⎝ ⎠

 (7) 

As prescribed in the Direct Analysis method, internal forces must be determined 
using a second-order elastic analysis with reduced elastic rigidity and consideration of 
initial imperfections. The commentary of the AISC Specification (2010b) 
recommends the reduced rigidity (EIDA) be determined by applying the 0.8τb 
reduction (as for structural steel) to EIeff (Equation 8). The stiffness reduction τb 
depends on the required axial strength, Pr and needs adaptation since Py, the axial 
yield strength, is defined only for structural steel members. For this study, Py is taken 
as Pno, resulting in τb given by Equation 9.  

 0.8DA b effEI EIτ=  (8) 

 ( )( )
1.0 for 0.5

4 1 for 0.5
r no

b
r no r no r no

P P

P P P P P P
τ

≤⎧
= ⎨ − >⎩

 (9) 

Initial imperfections can either be directly modeled (as was done in the second-order 
inelastic analyses) or represented with notional loads. For the elastic analyses, the 
notional load approach was used. A notional lateral load equal to 0.2% of the vertical 
load was included in each analysis. Following section C2.2b(4) of the AISC 
Specification (2010b), the notional load was taken as a minimum load when the ratio 
of maximum second-order drift to maximum first-order drift was less than or equal to 
1.7 and as an additive load otherwise.  

Two examples of internal force point traces from elastic analyses as described above 
are shown in Figure 2. The frames from which the two force traces (the red and blue 
lines) were derived had the same cross section and column length, thus they have the 
same interaction diagram. The frames differed only in the stiffness of the boundary 
conditions and the magnitude of the leaning column load, the effects of which, for the 
Direct Analysis method, are expected to be captured within the analysis. The 
intersection of the internal force point traces and the nominal beam-column strength 
interaction diagram are noted as the maximum permitted axial load (Pmax). The 
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intersection of the internal force point traces and the available beam-column strength 
(i.e., with reduction/resistance factors applied) are noted as Pmax,ϕ. This value is useful 
when comparing to strengths that have also had reduction/resistance factors applied, 
as will be shown later. 
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Figure 2. Schematic of interaction diagram and force trace. 

The maximum permitted axial load by the elastic second order analysis approach in 
the ACI Code (2011 §10.10.4) is determined in a similar manner. A second-order 
elastic frame analysis is performed using a specific elastic rigidity, although no 
accounting of initial geometric imperfections is necessary, and the design interaction 
is determined following the strain compatibility method using a rectangular concrete 
stress distribution (ACI 2011 §10.2.7). The flexural rigidity is not explicitly given for 
composite sections; however, it is common to use the formula for reinforced concrete 
column cross sections (Equation 10). It is important to note that since the elastic 
analysis used in this study accounts for the geometric nonlinearity along the entire 
length of the column, the nonsway moment magnification procedure with its lower 
flexural rigidity and higher stiffness reduction was not used (ACI 2011 §10.10.2.2). 

 0.7ACI c gEI E I=   (10) 

The critical axial load obtained from second-order inelastic analyses (Panalysis) for 
each section and frame pair is compared to the maximum permitted axial load from 
AISC (Pmax,AISC) and ACI (Pmax,ACI) in Figure 3. In addition to this comparison with 
unfactored strengths, a comparison with factored strengths is also presented in Figure 
3. In the comparisons with factored strengths, Panalysis is multiplied by a strength 
reduction/resistance factor (ϕ = 0.75 for the AISC methodology and for CCFTs with 
the ACI methodology, ϕ = 0.65 for the other sections with the ACI methodology) and 
Pmax,ϕ is used in lieu of Pmax. A maximum of 5% unconservative error is desired for 
beam-column design methodologies (ASCE 1997); this limit is shown in the figure as 
a red dashed line. 

The results in Figure 3 show a wide range of behavior. First, the unfactored strength 
comparison will be examined. For CFTs by the AISC methodology, the results are 
generally accurate with some slight unconservative error for intermediate slenderness 
CCFTs and for both RCFTs and CCFTs of very high slenderness. For SRCs by the 
AISC methodology, for all but the stocky members, the results are very conservative, 
indicating that the design methodology is underpredicting the strength by a significant 
margin. This is due to the effective stiffness (Equation 4) and in particular the C1 
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value (Equation 5) which are likely lower than necessary (Denavit 2012).  The results 
from the ACI methodology show a wider scatter than from the AISC methodology. 
This is to the due use of effective rigidity for reinforced concrete cross sections 
(Equation 10); this equation was not intended to represent nor fully capture the 
benefits of the wide range of steel ratios that composite members can have. Also 
adding to the scatter of the ACI results is the limit that the ratio of second-order 
moment to first-order moment must not exceed 1.4 (ACI 2011 §10.10.2.1). This limit 
is a prudent measure to avoid structures that are excessively sensitive to instability, 
but was not accounted for in the second-order inelastic analyses.  
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Figure 3. Axial strength results. 

The factored strength comparison yields some additional insights. The factored 
comparison values are typically lower than the unfactored comparison values. The 
reason for this can be seen in Figure 2. While a constant reduction is applied to 
Panalysis, the difference between Pmax,ϕ and Pmax is not constant and for frames where 
the geometric nonlinear effects are dominant (such as the case of the blue line in 
Figure 2), Pmax,ϕ and Pmax can be similar in value, indicating that the strength 
reduction/resistance factor is not effective at reducing the strength. Both the ACI 
Code (2011) and the AISC Specification (2010b) recognize this and include stiffness 
reduction factors which are effective at reducing the strength for these cases. 
However, in the case of the AISC Specification (2010b), the stiffness reduction 
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recommended in the commentary (Equation 8) was developed for structural steel 
members and does not recognize the difference in axial compression resistance 
factors between structural steel and composite. For example, if τb was taken as 0.8 
instead of Equation 9, then the total stiffness reduction would be 0.64 which is 
approximately equal to 0.877 times the axial compression resistance factor 
(0.877×0.75=0.658), commensurate with the stiffness reduction for structural steel 
(Surovek-Maleck and White 2004), and these errors would be negated. In the case of 
the ACI Code (2011), the flexural rigidity and stiffness reduction vary based on what 
methodology is used and the least favorable methodology was selected for these 
comparisons. 

INTERACTION STRENGTH 

The determination of the axial compression-bending moment interaction strength for 
the benchmark frames followed a similar process to that of the determination of the 
axial compression strength, but at several axial loads, creating interaction diagrams 
instead of single scalar results. In each case, a first analysis was performed to 
determine the axial strength as described in the previous section. A series of 
subsequent separate analyses were then performed applying a constant axial load and 
increasing lateral load until the limit point was determined.  

For the inelastic analyses, both the applied loads and internal forces were recorded at 
the limit point, allowing for the construction of the second-order internal force 
interaction diagram (blue dashed lines in Figure 4 for two example benchmark 
frames) as well as another interaction diagram that is directly proportional to the 
applied loads (blue solid lines in Figure 4). The moment values in the applied load 
interaction diagram equal the first-order moment due to the applied loads on the 
frame assuming no initial geometric imperfections. The intersection of the applied 
load interaction diagram and the y-axis occurs at Panalysis as defined in the previous 
section.  
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Figure 4. Comparison of interaction diagram results. 

The design strength interaction diagram (i.e., calculated using either the AISC or ACI 
design provisions) is shown as a green dashed line in Figure 4. The green solid line in 
Figure 4 represents the loads that when applied in a second-order elastic analysis 
result in internal forces that lay directly on the design strength interaction diagram. 
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Just as with the inelastic results, the moment values of the solid line equal the first-
order moment due to the applied loads on the frame assuming no initial geometric 
imperfections. The intersection of the applied load interaction diagram and the y-axis 
occurs at Pmax as defined in the previous section. 

In Figure 4, the green solid line indicates the envelope of applied loads that are 
deemed safe by the design methodology. The blue solid line indicates the envelope of 
applied loads that are demonstrated to be safe by the inelastic analysis. Thus, regions 
where the green line is outside of the blue line are considered unconservative. A 
radial measure is used to quantify the error (ε) is given by Equation 11, where rinelastic 
is the distance from the origin to the interaction diagram constructed from the second-
order inelastic analyses (blue line) and relastic is the distance along the same line to the 
interaction diagram constructed from the design methodology (green line). 
Unconservative error by this measure is represented with negative values 

 inelastic elastic

inelastic

r r

r
ε −=   (11) 

Interaction strength results for RCFT cross sections are shown in Figure 5. For these 
results the entire suite of benchmark frames has been sorted into 30 bins based on 
their steel ratio and slenderness (Equation 3). For each of these bins, the maximum 
unconservative error in the high axial load/low bending moment range, high moment 
moment/low axial load range, and intermediate range has been determined and 
displayed. For example in Figure 5a, for benchmark frames with RCFT cross sections 
by the AISC methodology with steel ratio ρs = 0.28 and slenderness (λoe) between 2.0 
and 3.0, the maximum unconservative error is 0.5% for cases of high bending 
moment and low axial load, 0% for cases of high axial load and low bending moment 
(indicating that no unconservative error was found), and 3.5% for intermediate cases. 
The size of the grey circles scales with the unconservative error and are shown for 
visualization purposes only. It is important to note that the results of Figure 5 
highlight the worst-case maximum unconservative error which is useful for the 
following discussion, but hide the majority of cases which display no unconservative 
error. Also of note is that the comparisons of Figure 5 are performed at the nominal 
strength level, not including any reduction/resistance factors in either the inelastic 
analysis or elastic design methodology. 

Cross section strength curves for composite members are quite convex, especially for 
concrete dominant members. Beam-column strength curves are much less convex 
(and often concave) due to the fact that material nonlinearity (primarily concrete 
cracking but also concrete crushing and steel yielding) initiates at low load levels and 
severely reduces flexural rigidity. This effect is greater for more slender columns 
since the second-order effects are greater but also because the ratio of bending 
moment to axial load is greater, a condition which leads to greater reductions in 
effective slenderness. This behavior has been observed experimentally (Perea et al. 
2014) and is the cause of the most evident results in Figure 5, the high unconservative 
errors of very slender concrete dominant frames for both the AISC and ACI 
methodologies. This slenderness is based on the effective length (KL) so high 
slenderness can either be caused by long unsupported lengths (L) or by high effective 
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length factors (K) from either soft boundary conditions or high leaning column load. 
Also note that for the ACI methodology, the 1.4 limit on the ratio of second-order 
moment to first-order moment (ACI 2011 §10.10.2.1) was enforced. Likely the most 
effective way to reduce these errors is with modifications to the flexural rigidity used 
in the elastic analysis.  
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(a) RCFT cross sections – AISC methodology 
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(b) RCFT cross sections – ACI methodology 

Figure 5. Interaction strength results. 

Other unconservative errors seen in Figure 5 are generally small and are typically 
from sidesway inhibited single curvature cases which are challenging due to the fact 
that cracking and the accompanying stiffness reduction will occur along the entire 
length of the column as opposed to just the member ends. Other section types show 
similar results to those seen in Figure 5 with the exception of SRCs by the AISC 
methodology which show little unconservative error due to the low effective flexural 
rigidity as discussed previously in the context of axial strengths (Denavit 2012).  

CONCLUSION 

A wide ranging assessment of the second-order elastic beam-column design 
methodologies for steel-concrete composite members in both the AISC Specification 
(2010b) and the ACI Code (2011) has been presented. Comparisons were made 
between second-order inelastic analysis results, deemed sufficiently accurate to form 
the basis of design recommendations, and second-order elastic analysis results, 
representative of the analyses an engineer performs as part of the methodology.  

In general, both design methodologies were found to be safe and accurate for the 
majority of cases. However, some significant unconservative errors were identified, 
particularly for concrete dominant members with high slenderness effects and areas 
of potential improvement in the design provisions have been identified. The AISC 
Direct Analysis stiffness reduction for composite members could be revised to 
recognize the effects of cracking and the lower axial compression resistance factor for 
these members. The AISC effective rigidity for SRC members could be revised to 
take more full advantage of the concrete contribution. A new effective rigidity for 
composite columns in ACI could be beneficial to account for wide range of steel 
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ratios possible with these cross sections. More consistent requirements for the 
effective rigidity and stiffness reductions in general within the ACI Code (2011) 
could also be beneficial.   
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